PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L-p97 axis

نویسندگان

  • Kaiyu He
  • Corey Nathaniel Cunningham
  • Nandini Manickam
  • Ming Liu
  • Peter Arvan
  • Billy Tsai
  • Benjamin S. Glick
چکیده

In mutant INS gene-induced diabetes of youth (MIDY), characterized by insulin deficiency, MIDY proinsulin mutants misfold and fail to exit the endoplasmic reticulum (ER). Moreover, these mutants bind and block ER exit of wild-type (WT) proinsulin, inhibiting insulin production. The ultimate fate of ER-entrapped MIDY mutants is unclear, but previous studies implicated ER-associated degradation (ERAD), a pathway that retrotranslocates misfolded ER proteins to the cytosol for proteasomal degradation. Here we establish key ERAD machinery components used to triage the Akita proinsulin mutant, including the Hrd1-Sel1L membrane complex, which conducts Akita proinsulin from the ER lumen to the cytosol, and the p97 ATPase, which couples the cytosolic arrival of proinsulin with its proteasomal degradation. Surprisingly, we find that protein disulfide isomerase (PDI), the major protein oxidase of the ER lumen, engages Akita proinsulin in a novel way, reducing proinsulin disulfide bonds and priming the Akita protein for ERAD. Efficient PDI engagement of Akita proinsulin appears linked to the availability of Hrd1, suggesting that retrotranslocation is coordinated on the lumenal side of the ER membrane. We believe that, in principle, this form of diabetes could be alleviated by enhancing the targeting of MIDY mutants for ERAD to restore WT insulin production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ERdj5-Sel1L complex facilitates cholera toxin retrotranslocation

Cholera toxin (CT) traffics from the host cell surface to the endoplasmic reticulum (ER), where the toxin's catalytic CTA1 subunit retrotranslocates to the cytosol to induce toxicity. In the ER, CT is captured by the E3 ubiquitin ligase Hrd1 via an undefined mechanism to prepare for retrotranslocation. Using loss-of-function and gain-of-function approaches, we demonstrate that the ER-resident f...

متن کامل

A stalled retrotranslocation complex reveals physical linkage between substrate recognition and proteasomal degradation during ER-associated degradation

During endoplasmic reticulum-associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the H...

متن کامل

The nucleotide exchange factors Grp170 and Sil1 induce cholera toxin release from BiP to enable retrotranslocation

Cholera toxin (CT) intoxicates cells by trafficking from the cell surface to the endoplasmic reticulum (ER), where the catalytic CTA1 subunit hijacks components of the ER-associated degradation (ERAD) machinery to retrotranslocate to the cytosol and induce toxicity. In the ER, CT targets to the ERAD machinery composed of the E3 ubiquitin ligase Hrd1-Sel1L complex, in part via the activity of th...

متن کامل

PERK (EIF2AK3) Regulates Proinsulin Trafficking and Quality Control in the Secretory Pathway

OBJECTIVE Loss-of-function mutations in Perk (EIF2AK3) result in permanent neonatal diabetes in humans (Wolcott-Rallison Syndrome) and mice. Previously, we found that diabetes associated with Perk deficiency resulted from insufficient proliferation of beta-cells and from defects in insulin secretion. A substantial fraction of PERK-deficient beta-cells display a highly abnormal cellular phenotyp...

متن کامل

Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival.

Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L's physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015